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Abstract – A new and efficient computational approach to
calculate Mie scattering of light by spherical particles,
including very large ones, is presented. The code based on this
approach is capable to compute light scattering by absorbing
particles with size parameters up to sixteen million, and by
non-absorbing spherical particles with size parameters as
large as one billion. This feature is very important for
modeling scattering properties of coastal ocean waters
containing suspended sand grains, clay and large detritus
particles.

1. INTRODUCTION

Presented below approach allow us to compute
Mie light scattering properties of very large particles
like grains of sand, detritus and clay. These
computations are very important for optics of
coastal waters contaminated with terrigenic particles
and dead organic matter. Results and analysis of these
computations allow us to extend existing models of
seawater optical properties [1-3] to include
components that are specific to coastal environment.
The preliminary results of using programs based on
this approach to calculate optical properties of sand
particles are very promising [4-6]. The approach is
also applicable to smaller particles with results
identical to the results produced by existing
algorithms.

The theory of light interaction with scattering
and absorbing medium includes two types of
problems: direct and inverse. The direct problem
deals with scattering of light in the medium provided
that the shape, size, internal structure, composition,
and dielectric permeability of particles, and
properties of radiation, such as wavelength, intensity
and degree of polarization, are known. In the classical
case of independent scatterers such problem is
rigorously formulated and reduces to the
mathematical calculations. In many practical cases
we are interested in inverse problem to determine
properties of medium through characteristics of
scattered light. Quite often the only information we
have is an intensity of light scattered in one direction
or, less often, in several ones. To correctly solve the
inverse problem we should know vector amplitude

and phase of the light field scattered in all directions
together with the field inside particle. It is clear that
without knowledge of additional information it is
impossible to solve the inverse problem. One of the
ways to simplify this problem consists of reducing the
number and variability range of medium parameters
with consecutive election of major factors that
represent main features of light scattering and
absorption. The simplification of inverse problem
may be obtained through analysis of the results of the
direct problem for particular physical composition of
scattering and absorbing medium.

The most important and exactly solvable
problem in the theory of scattering and absorption of
light by scattering particles is a problem of light
scattering by a sphere with arbitrary radius and
refractive index. While the mathematical solution to
the problem of light scattering on a homogeneous
sphere is solved about century ago [7] the practical
implementation of this solution became possible only
with development of powerful computers. In spite of
the fact that scattering particles in atmosphere and
ocean are non-spherical and non-homogeneous,
results of Mie theory [7], averaged over particles size
distribution, allow us in the first approximation to
describe optical effects from scattering by randomly
oriented polydisperse non-spherical particles. The
Mie theory also describes multitudes of effects related
to scattering, effects that are very difficult to
understand using only qualitative approach.

Mathematical rigorousness of the solution of
light scattered by a spherical particle implies that the
numerical scattering algorithm used to compute this
scattering should be precise and stable. Stability of the
basic procedures of the algorithm allows to improve
computational effectiveness of more difficult
problems such as scattering by a coated particle. In
many cases the speed of calculations is also
important. Concerning the speed of execution and
stability at large size parameters the programs, that
are based on a proposed algorithm, have no known
prototypes in the world. The increase in speed of
computations achieved due to improvement of the
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algorithm is about 6 times. Additional performance
characteristics of the algorithm are also exceed
characteristics of widely known programs, such as
Wiscombe’s [8, 9] program. For example, the
number of scattering angles can reach 3601 and a size
parameter can be as large as one billion for non-
absorbing particles, and, respectively, 1801 and ten
million for absorbing particles.

Below we present a short overview of Mie theory
[7, 10] that is necessary for further references and
clarity of proposed computational algorithm.

2. DETAILS OF MIE SCATTERING
COMPUTATIONS

Let us consider a plane monochromatic light
wave with a wavelength l  and wave number
k = 2p l/  that falls on a spherical particle with
radius a . The complex amplitudes of falling and
scattered fields are connected with the following
relationship,
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Coefficients of scattering matrix are expressed in the
form of the following infinite sums [10]:
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here p n  and tt n  are functions of scattering angle q ;

and coefficients an, bn  depend on dimensionless size

parameter x k a= . Expressions (2) represent
decomposition of a scattered wave on multipole
components. To obtain energetic scattering
characteristics we need to compute Mueller 4 4¥
matrix Si k  with the following elements:

S S S S S S

S S S S S

S S S S S

11 1
2

2
2

12 2
2

1
2

33 2 1 2 1

34 2 1 2 1

1
2

1
2

1
2
1
2

= + = -

= +

= - -

Re( ), Re( ),

Re( ),

Im( ).

* *

* *

(3)

The physical meaning of a size parameter x  is a
number of wavelengths that fit into a perimeter of a
particle with radius a . It means that input from a
multipole of nth  order at n x>  is diminishing quickly

with the increase of n  According to Wiscombe [8],
the maximum number of important elements nmax  in
the infinite series (2) may be estimated according to
the regression:

n x L xmax
/= + +1 3 2 , (4)

here the coefficient L  varies between 4 and 6
depending on the value of x . The angular functions
p n , t n  are expressed through the Legendre
polynomials of the first kind:
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These functions are computed using following
recurrent relationships:
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here m q= cos , p 0 0= , p1 1= . The coefficients an,

bn  are expressed through Bessel-Ricatti functions and
their derivatives:

a
m m x x x m x

m m x x x m x

b
m x x m x m x

m x x m x m x

n
n n n n

n n n n

n
n n n n

n n n n

=
◊ -
◊ - ◊

=
- ◊
- ◊

y y y y
y x x y

y y y y
y x x y

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,

© ©

© ©

© ©

© ©

(7)

here m  is a complex refraction index of a scattering
sphere relative to the refraction index of surrounding
medium, and the wavelength in the expression for x
includes wavelength of the light in surrounding
medium. The Bessel-Ricatti functions, both for
complex and real arguments, satisfy the following
recurrence relationship:
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with the following expressions for initial terms of
these functions:
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To simplify computation of coefficients an and bn

Aden [10] introduced the following logarithmic
derivative:
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Using (10) and the following recursions for the
Bessel-Ricatti functions,
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we can rewrite Eqs. (7) as follows:
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with the logarithmic derivative (10) satisfying the
recursion relationship:
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Relationships (12) are more convenient for
numerical computations than Eqs. (7) because they
include only one parameter, a logarithmic derivative
Dn , which is a function of complex argument. The
Bessel-Ricatti functions in (12) are functions of real
argument x . Another computational advantage of
(12) over (7) is in the recursion relationship (13)
that employs only one previous value of function
instead of two values used in (8).

Computational problem of recurrence
relationships at n Æ•  is coupled with different
types of convergencies for functions Dn , cn, y n .
Numerical representation of these functions has
limited precision. As a consequence, for any arbitrary
values of Bessel-Ricatti functions we have some
errors en-1, and en . These errors can be represented
as linear combinations of Bessel-Ricatti functions:

e y ck k kC C= +1 2 ,      k n n= -1, . (14)

It is clear from (14) that, if at any particular
computational step we achieve an ideal precision, we

would not eliminate the error of computation,
because it had been carried out from previous steps.
The relative error for, let say, function y   is:

dy c yk k kC= 2 . (15)

Starting from a certain values of k  the function c
gradually grows, while the function y  diminishes. As
a result, in the range of continuous increase of c
both upward recursions for y  and D diverge.
Similarly, computation of function cn with a
downward recursion also diverges. A minimum
number of iterations Dn  can be estimated as

Dn L x= ◊ +1 3 2/  , (16)

here L  is a constant with a value in the range from 7
to 8. Similar estimates of logarithmic derivative give
necessary iterations number and a range of n‘s where
the downward recurrence converges:

n m x n L m x> = +, ( ) /D 1 3 2 . (17)

This estimate is evident if the refractive index m  is
real. If n0  is a limiting number in a series given by
(4), then the initial values of n  in downward
recursion procedures are less than

n n L x

n n m x L m xD

0 0
1 3

0 0
1 3

2

1 2

y = + +

= + - + +

/

/

,

( ) ( ) .
, (18)

In a majority of algorithms that compute
coefficients an, bn  it is typical to calculate y n  using

an upward  recursion. The function y n  diverges when
n x> . As a consequence, the computer rounding
error influences the value of L  in (4). With the
increase of size parameter x  the rounding errors
accumulate. This causes the optimal value of L  to be
dependent on x . As a consequence, smaller values of
L  become preferable.

This problem is not as important for
computations of extinction and scattering
efficiencies Qe  and Qs . These values are determined
by the following equations:
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Fig. 1. Relative error of computing scattering to
180° for non-absorbing particles with various
refraction indices and size parameter
x = ◊2 104  as a function of coefficient L  in
equation (4).

and they converge rapidly. As our computational
examples show, all 16 decimal digits coincide at
L > 3 7. . The asymmetry parameter,
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also converges quickly.
Another problem exists with the calculation of an

efficiency factor at 180 degrees, or a radar backward
cross-section:
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The radar backward cross-section may be used as a
test value for precision of phase function calculations
in the whole range of angles between 0 and 180
degrees. Computational errors of Qb  as a function of

parameter L  are shown in Fig. 1. The computations
are made for size parameter x = 20000  with y n

computed by downward recursion. Fig. 1 shows that
Qb  could not be computed with the ideal precision,
and minimal errors in back-scattering calculations
correspond to L > 7. This range is not acceptable for
computations of y n  by upward recursion. In this

case, if we accept L = 4 , the relative errors of Qb  for
analyzed refraction indices will be in the range of

Fig. 2. Comparison of forward and backward
recursion methods in computing logarithmic
derivative for the case of air bubble with size
parameter x = 1000 in water.

7 10 8◊ - .  If this level of errors is acceptable,  then
according to Eqs. (18), for non-absorbing particles
with m > 1 computations of Bessel functions and
their derivatives could be accomplished by upward
recursion method. At the same time, both methods of
upward  and downward recursion do not produce
identical results. For example, for the refractive
index m i= + ◊1 5 0.  a comparison of upward and
downward recursion results shows that at x ~ 105

corresponding values of the real part of D m x1( , )

coincide with 10-digit precision, while at x ~ 106

these values coincide with 9-digit precision.
This difference is due to accumulation of error in

logarithmic derivative computation by the downward
recursion method. Similar error accumulation is also
specific for the direct recursion method.
Consequently, provided that the upward recursion
converges, the difference between upward and
downward recursions consists in the fact that in the
case of upward recursion the lower terms an , bn  are
computed with higher precision, while in the case of
downward recursion the higher terms are computed
with higher precision.

Certain interest represent non-absorbing particles
with refractive index less than one (like air bubbles in
water). When the upward recursion of logarithmic
derivative should start to diverge at n m x> , the
formal results of computations look credible. For
example, for air bubbles in water ( m = 0 75. ) at
x = 1000, values of efficiency factors for scattering
and extinction coincide and are equal to
Q Qs e= = 2 0018805. . At the same time the
Wiscombe’s program [8] gives values of
Q Qs e= = 1 9979082. . To analyze this result in Fig. 2
we show results of computations by upward recursion.



2378

It is necessary to note that in upward recursion
algorithm we used 10-byte representation of floating
numbers. In spite of this the recursion completely
diverges at value of n ª 815. The identity of
recurrent relationships for functions c  and y  causes
at iteration numbers n > 815 to compute a
logarithmic derivative of c . Based on the value of n
at divergence point ( n ª 815) the estimate for L  in
Eqs. (16)-(18) is: L ª 7 15. .

Computational specifics of scattering by
absorbing particles have been analyzed earlier by
Dave [12]. In his paper Dave showed that the upward
recursion of logarithmic derivative for the real part
of refractive index Re( ) .m = 1 342 diverges. As a
solution he proposed to use the procedure of
downward recursion starting from

n m xD0 1 1 1= ◊ +. . (23)

As an initial value for downward recursion of
logarithmic derivative Bohren and Huffman [13] use
the value of

n n m xD0 15= ( ) +max ,max , (24)

where nmax  is found from (8) at L = 4 . As a
convergence criterion for an upward recursion
Bohren and Huffman [13] proposed an non-equally
criterion, Im( )m x < 80 . According to a discussion
above, such criterion should also depends on a real
part of refractive index. The divergence of upward
recursion at Re( )m > 1 and Im( )m π 0  means that
the downward recursion should converge at values of
n  significantly smaller than Re( )m x  or, at largest
values of x , at n D0  determined by (18).

Lentz [14] proposed a specific algorithm to
evaluate initial values of logarithmic derivative
Dn max . This algorithm became a basis for a well-
known and stable Wiscombe’s program [9] that is
capable to compute Mie scattering values for size
parameters x  up to 20,000. The Lentz’s method is
effective for absorbing particles and Re( )m < 1,
otherwise the number of iterations of the method is
about ( )m x-1 . For weakly absorbing particles more
elaborate initialization method of Lentz is less
effective than the direct method of logarithmic
derivative calculations that uses (13) starting from
n D0 , determined by Eqs. (18) or (23). Another
shortcoming of the Lentz’s method is a requirement
to check division by a small number. To eliminate
uncertainty of zero by zero division Cachorro and
Salcedo [15] proposed an improved method of
logarithmic derivative initialization. By analyzing

various sources of computational errors in Mie
calculations Cachorro and Salcedo came to a
conclusion that it is possible to make such
computations for any arbitrary values of refraction
index and size parameter.

3. ALGORITHM

By analyzing major features of logarithmic
derivative convergence we propose a new improved
method for computation of logarithmic derivative.
The purpose of the improvement is to increase
speed, precision and stability of Mie computations.

In the case of natural scattering particles their
size distribution function may be regarded as
continuous. This means that the procedure to
compute optical properties of these particles consists
in integration over size distribution. The accuracy of
final results depends on the number of integration
points. To choose the proper integration method it is
necessary to understand what functions may be
integrated. Functional dependence of scattering
properties on size parameter is not smooth.
According to 16, 17] resonance structures are
revealed for both extinction and absorption. For this
reason the integration technique using Simpson’s or,
even worse, quadrature formula leads to a significant
increase in error.

For the optimal choice of integration grid, in
respect to the integration precision, we should
possibly pre-compute a sequence of integral
parameters Q Q Q Q Qi e s as b= ( ), , ,  at different number

of grid points k k k k n= + +0 0 01, ,...,  and then to
choose a proper value of k . A possible criterion of
optimal greed is a minimum of distance to an average
point:
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here s j is a dispersion of j th  efficiency factor, and

s 0 is an acceptable value of dispersion.
The criterion to use this procedure in Mie

calculations is determined by the effectiveness of an ,
bn  computations, and, consequently, by the
effectiveness of logarithmic derivative computation.
As our testing shows, the duration of one iteration
using Lentz’s method and Wiscombe’s procedure on a
Celeron-333 CPU is about 1 5 10 5. ◊ -  seconds. As a
comparison, our direct coding of (13) using high-level
computing language allows us to increase 20 times the
computational speed of one recursion. The same
procedure implemented by one of the authors (EBS)
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as an assembler code executes 60 times faster than
the Wiscombe’s procedure [9]. It is fair to mention
that the coded version of Lentz’s method is not
optimal in respect to complex arithmetic. At the
same time such large difference in execution speed
doubts effectiveness of numerical algorithms to
investigate convergence of logarithmic derivative
inside the Mie code. Concerning the approach applied
to large absorbing particles to compute iterations
starting with n D0  determined by (18), we came to the
conclusion that this limit is largely overestimated.

The essence of proposed method is to restrict
from the top the number of possible iterations for
absorbing particles. Let us note, that because the
efficiency of computing using recurrent relation (13)
is very high, we have no need to find a precise
mathematical value.

In the beginning, let us consider some exceptions:
(a) for a non-absorbing particles let us begin our
computations of logarithmic derivative and function
y  using downward recursion starting with n0y  and

n D0 , defined by (18); (b) for Re( )m < 1 we can
accept n nD0 0= y . Alternatively, consider the case

when Re( )m > 1, Im( )m π 0 . Now let us compute a

value of logarithmic derivative Dn
a  a t

n x L xª + ◊ 1 3/ , L = 7, using an over-estimated value
of n D0  taken from (18). Next, let us consecutively
lower value of n D0  until the absolute value of the
difference between computed value of Dn  and value

of Dn
a  exceeds the predetermined value of e . The

value k n nD= -0  then determines the necessary
number of iterations in a more rigid sense than in the
Lentz’s method.

From the results of computations, displayed in
Fig. 3, it is clear that for all Im( )m π 0  the iteration
number k  as a function of size parameter x  at
x Æ•  approaches certain asymptotic value. In the
limit of small values of x  the function k x( )  is
restricted from above by the value of iterations for
non-absorbing case kna , which is determined by (18).

Relative to the efficiency of computations, the
simplicity of numerical algorithm is more important
compared to its mathematical rigorousness. For this
reason let us determine the number of necessary
iteration as

n k kit n ac= min( , )a , (26)

where kac  is the asymptotic value of iteration
numbers as a function of the refractive index.

To analyze the functional dependence of
maximum   number    of   iterations    on   complex

Fig. 3. Dependence of a number of iterations for
computing logarithmic derivative from size
parameter for various refraction indices.

refraction index, let us plot  kac  as functions of
imaginary part of refractive index. The number of
iterations shown in Fig. 3 are applicable to compute
logarithmic derivative using (4) with L = 7. As it was
mentioned above, for computing y  with upward
recursion, L  should be of the order of 4.
Consequently, the number of iterations should be
increased by Dn xª ◊3 1 3/ .

Some results of computations for the case of
refractive index in the range between 1.01 and 3 are
shown in Fig. 4. In order to determine reliable value
of maximum at small values of absorption the value
of size parameter x  was continuously varied from
small values  to 5 107◊ . The imaginary part of
refractive index varied from 0.001 to 2. At small
absorption values the number of iterations given by
(26) is less then kac  if x  is not very large (the
program with absorption works up to x=16000000).
One of the major feature of the curves displayed in
Fig. 4 is a similarity of linear dependencies of the
maximum number of iterations as a function of
reverse imaginary part of refractive index. Linear
dependence in a log-log scale implies a power law.
The exponent of this power law is very close to unity
and is always less than 1.009.

Consequently, we can conclude that the
asymptotic number of iterations is reversely
proportional to the imaginary part of refractive
index. Discrepancies to this behavior are developed
when absorption increases, and these differences are
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Fig. 4. Dependence of a number of iterations for
computing logarithmic derivative as a
function of reverse absorption coefficient.

higher for smaller values of the real part of refractive
index. Studies of the behavior of the maximum
iteration number with the increase of k m> Re( )
revealed a linear type of dependence in this area. The
proportionality coefficient in this dependence is
independent on refraction index and is equal to 20.

The Fig. 4 also shows that the coefficient of
asymptotic dependence of 1 / k  in logarithmic scale
(shift parameter) is closely connected with the real
part of refractive index. A close analysis of numerical
results shows that the precise empirical relationship
that describes computed dependencies shown in Fig. 4
can be written as:

N k
m

k
m

mit = + - -
-

Ê
ËÁ

ˆ
¯̃ +20 20 3 5 8

2 4
0 8

30. .
.
.

. (27)

This relationship may be used also in the area of high
values of absorption. The real part of refractive
index here is denoted as m , and the absolute value of
imaginary part as k .

Empirical equation (27) by as far as 60%
overestimates a number of necessary iterations in the
range of strong absorption. Nevertheless, the average
overestimation over the whole set of computational
values is only in the range of 2%.

Comparison of computational results of
maximum necessary iterations with the values
estimated using (27) is shown in Fig. 5. The figure
shows that (27) with a high accuracy defines the
number of necessary iterations. Equation (26) with
Eqs. (18) and (27), due to the condition of exceeding
a number of iterations above necessary or defined by
the  Lentz  algorithm,  systematically  exceeds  the
necessary value. Maximum relative overestimation of
a number of iterations for the curves shown in Fig. 3

Fig. 5. Upper estimate of a maximum number of
iterations given by (27) compared with the
values obtained from a numerical experiment.

is equal to 1.46-1.57 for m > 1 03.  and approximately
2.12 for m = 1 03. . Visible discrepancy for optically
soft particles is due to a less rigid estimation of the
number of iterations for the case without absorption.
In this case to approximate results of computational
experiment we can use the following equation:

n m x L m x L xit = - + - +( ) ( ) / /1 11 3 1 3 . (28)

This correction, however, insignificantly changes
effectiveness of computational code for the case of
large particles due to the large values of size
parameter x x>> 1 3/ .

As our numerical testing shows, (27) is applicable
to the following extreme values of optical constants:
(a)  m = 8 9. ; k = 0 69. , the case of refractive index
of water at wavelength equal to 10 cm; (b) m = 37,
k = 41, the case of refractive index of platinum at
wavelength equal to 10 mkm.

Consequently, for all realistic values of refractive
index m > 1 the maximum iteration number may be
estimated using (27). In spite of the approximate
method to estimate the number of iterations of the
logarithmic derivative, the execution speed of this
part of the Mie calculations is about 10 times higher
than the execution speed of corresponding fragment
in Wiscombe’s code. As a whole, the execution speed
of the code determined by the effectiveness of
computing summations defined by (2). The
coefficients an , bn  given by (2) does not depend on
angle; and angular functions p , t  does not depend on
optical properties and size parameter. As a
consequence, these values are computed
independently.
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4. COMPUTATIONS OF PHASE FUNCTION

Among others, there are two effective methods
to compute phase function:

a) To compute consecutively coefficients an , bn

and summate them at each angle. The program based
on this method and utilizing approach of this paper is
written and available for public use [18]. This
program can compute Mie optical parameters and
phase function of scattering with size parameters x
up to one billion ( x ~ 109). The consecutive
calculation of coefficients an  and bn  is possible only
with upward recursion. This restricts this program to
calculate Mie scattering only on a weakly absorbing
particles.

b) To compute all values of an  and bn  and to
summate complex amplitudes separately for each
scattering angle. This method allows to use a
downward recursive procedure.

The shortcoming of the downward procedure
consists of the necessity not only to compute, but to
save all series terms into a dynamic memory (RAM),
which increases the requirements to the computer
used for calculations.

In some special computational cases, especially
of polydisperse large particles with the requirement
to compute results for large number of scattering
angles, it became very important to create a
memory-efficient program.

In ordinary case we compute downward recursion
for each term of series, i. e. about n iD0 -  iterations,
where i  is an index of series term. In order to avoid
unnecessary computations in a regime of economic
memory usage we propose to use a two-pass method
of downward recursion. This method consists of the
following. In the first pass we compute all terms of
logarithmic derivative series and also function y . At
the same time we keep in memory not all computed
values, but a reduced array of ‘base’ values that differ
in indices on a fixed value of j . These values are
stored in order to use them later as an initial values
for downward recursion in the next stage of
algorithm. In this stage the ‘base’ values of complex
function D and functions y i and y i+1 allow us to
compute a sequence of these functions in the interval
i k k j= +[ , ], ( )k n j= +1 . We also compute the
values of ai  and bi  in the same interval. After
computation of partial sums these values are no
longer necessary and the memory they occupy may
be released. This method is capable to compute Mie
parameters for size parameter x > ◊1 6 107.  with the
small memory usage equal to 640K. It is necessary to
note that in an assembler version of the downward
recursion  the  execution  time  of  the  first  pass  is

Fig. 6. Light scattering phase function by particle
with relative refractive index n = 1 5.  and size
parameter x = 20000 in water.

smaller than the time necessary to compute and store
functions y i and Di  for all i . This effect is a result
of the j -fold reduction in a number of CPU-RAM
processes.

An important factor in an analysis of Mie
scattering of light by large particles is a number of
angles to compute phase function. For example, for
an non-absorbing mono-disperse system of particles
the angular structure of phase function becomes more
and more oscillating. An example of such phase
function is given in Fig. 6. The high frequency
oscillations are the result of increase in the share of
angular functions with large indices. Equation (4)
shows that the maximum frequency of oscillations
grows almost proportionally to the size parameter x .
At the same time a polydisperse system of particles
usually do not display such structure. It means that in
order to produce a smooth polydisperse phase
function we need to integrate using a very large
number of integration points. The alternative
method consists of smoothing over the aperture of
receiving device. This method, as it is clear from Fig.
6, also needs a large number of angles. All this
demonstrate that the increase in speed of calculation
eventually results in an improving quality of the final
results.

In order to enhance effectiveness of phase
function calculations let us consider the properties of
functions p  and t . These functions have the
following symmetry properties:

 p m p mn
n

n( ) ( ) ( )- = - -1 1 , t m t mn
n

n( ) ( ) ( )- = -1 . (29)
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The series p t p t p t1 1 2 2, , ..., ,, , n n  are series of even and

odd functions. This property of the functions p  and
t . may reduce the number of calculations. In the case
when the angular grid is symmetrical relative to 90°,
the number of calculations of functions p  and t .
may be reduced twice. By computing a sum of
complex intensities for even SE  and odd SO  angular
functions, we obtain,

S S S S S Sj E O j E O( ) , ( )m m= + - = - . (30)

Another property of the angular functions, the
independence on size parameter, may be exploited
during an integration over size distribution. If the
available dynamic memory is large enough, the values
of angular functions may be computed only ones. For
a large number of angular values this method can give
a 60% increase in speed.

5. CONCLUSION

A new efficient computational algorithm to
calculate Mie scattering of light by spherical
particles, including very large ones, is presented.  The
codes are capable to compute light scattering by
absorbing particles with size parameters up to sixteen
million, and by non-absorbing spherical particles with
size parameters as large as one billion. This feature is
very important for modeling scattering properties of
coastal ocean waters that contain suspended sand
grains, clay and large detritus particles. The codes of
Mie scattering based on the presented algorithm are
available for public use [18].

6. ACKNOWLEDGMENTS

The author from the Naval Research Laboratory
(NRL) thanks continuing support at through the VSF
73-6641-02-5 program. This article represents a
NRL contribution PP/7330-02-54.

7. REFERENCES

[1] V. I. Haltrin, “Light scattering coefficient of
seawater for arbitrary concentrations of
hydrosols,” J. Optical Soc. America, 16, 1715-
1723, (1999).

[2] V. I. Haltrin, “Chlorophyll-based model of
seawater optical properties,” Appl. Optics, 38,
6826-6832 (1999).

[3] V. I. Haltrin,"Empirical algorithms to restore a
complete set of inherent optical properties of
seawater using any two of these properties,”
Canadian Journal of Remote Sensing, 26, 440-
445, (2000).

[4] V. I. Haltrin, and E. B. Shybanov “Light
scattering properties of quartz particles in
seawater,” – in Proceedings of the International
Geoscience and Remote Sensing Symposium
IGARSS 2000, ed. Tammy I. Stein, IEEE,
Piscataway, NJ, USA, pp. 1842-1844, (2000).

[5] V. I. Haltrin, E. B. Shybanov, R. H. Stavn, and
A. D. Weidemann, “Light scattering coefficient
by quartz particles suspended in seawater,” in
Proceeding of the International Geoscience and
Remote Sensing Symposium IGARSS’99,
Hamburg, Germany, ed. Tammy I. Stein, IEEE,
Piscataway, NJ, USA, pp.1420-1422, (1999).

[6] V. I. Haltrin, and E. B. Shybanov, “Light
scattering properties of sand particles suspended
in seawater,“ Oceanography, 14, 25-25 (2001).

[7] G. Mie, “Beitrage zur Optik Trüber Medien,
Speziell Kolloidaler Metallösungen,” Annalen
der Physik, 25, 25-445, (1908).

[8] W. J. Wiscombe Mie scattering calculations:
advances in technique and fast, vector-speed
computer codes, NCAR/TN-140+STR, (National
Center for Atmospheric Research, Boulder,
Colo, USA, 1979).

[9] W. J. Wiscombe “Improved Mie Scattering
Algorithm,” Appl. Opt., 19, 1505-1509, (1980).

[10] H. C. Van de Hulst, Light Scattering by Small
Particles, pp. 470, (Dover Publications, Inc.,
New York, NY, 1981)

[11] A. L. Aden, “Electromagnetic scattering from
spheres with sizes comparable to the
wavelength,” J. Appl. Phys., 22, 1242-1246,
(1951).

[12] J. V. Dave, “Scattering of electromagnetic
radiation by a large, absorbing sphere,” IBM J.
Res. Develop., May 1, 302-313, (1969).

[13] C. F. Bohren, and D. R. Huffman, Absorption
and Scattering of Light by Small Particles,
(Wiley Interscience, New York, N.Y., 1983).

[14] W. J. Lentz, “Generating Bessel functions in
Mie scattering calculations using continued
fractions,” Appl. Opt. 15, 668-671, (1976)

[15] V. E. Cachorro, and L. L. Salcedo, “New
Impruvements for Mie Scattering Calculations,”
J. of Electromag. Waves and Applications, 5,
913-926, (1991).

[16] P. Chylek P., J. T. Kiehl, M.K.W. Ko “Narrow
resonance  structure in the Mie scattering
characteristics. Appl. Optics, 17, 3019-3021,
(1978).

[17] H. S. Bennett, and G. J. Rosasco “Resonances in
efficiency factor for absorbtion: Mie scattering
theory,” Appl. Optics, 17, 491-493, (1978)

[18] The codes based on presented algorithm are
available at <http://www7333.nrlssc.navy.mil/
~haltrin>.


